A New Selection Operator for the Discrete Empirical Interpolation Method - improved a priori error bound and extensions

نویسندگان

  • Zlatko Drmac
  • Serkan Gugercin
چکیده

This paper introduces a new framework for constructing the Discrete Empirical Interpolation Method (DEIM) projection operator. The interpolation node selection procedure is formulated using the QR factorization with column pivoting, and it enjoys a sharper error bound for the DEIM projection error. Furthermore, for a subspace U given as the range of an orthonormal U, the DEIM projection does not change if U is replaced by UΩ with arbitrary unitary matrix Ω. In a large-scale setting, the new approach allows modifications that use only randomly sampled rows of U, but with the potential of producing good approximations with corresponding probabilistic error bounds. Another salient feature of the new framework is that robust and efficient software implementation is easily developed, based on readily available high performance linear algebra packages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A weighted empirical interpolation method: a priori convergence analysis and applications

We extend the classical empirical interpolation method [1] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis is provided for the proposed method and the error bound by Kolmogorov N-width is improved from the recent work [13]. ...

متن کامل

Reduced basis model reduction for non linear evolution equations

This thesis deals with extensions to the reduced basis method for general non linear parametrized evolution problems. So far necessary assumptions on the underlying non linearities or the a ne separation of parameters and spatial variables are overcome by a generalization of the empirical interpolation method for discrete operators. Next to the development of the empirical operator interpolatio...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

متن کامل

Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition

Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016